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The small oscillation modes in complex micromagnetic systems around an equilibrium are
numerically evaluated in the frequency domain by using a novel formulation, which natu-
rally preserves the main physical properties of the problem. The Landau–Lifshitz–Gilbert
(LLG) equation, which describes magnetization dynamics, is linearized around a stable
equilibrium configuration and the stability of micromagnetic equilibria is discussed. Spe-
cial attention is paid to take into account the property of conservation of magnetization
magnitude in the continuum as well as discrete model. The linear equation is recast in
the frequency domain as a generalized eigenvalue problem for suitable self-adjoint opera-
tors connected to the micromagnetic effective field. This allows one to determine the nor-
mal oscillation modes and natural frequencies circumventing the difficulties arising in
time-domain analysis. The generalized eigenvalue problem may be conveniently discret-
ized by finite difference or finite element methods depending on the geometry of the mag-
netic system. The spectral properties of the eigenvalue problem are derived in the lossless
limit. Perturbation analysis is developed in order to compute the changes in the natural fre-
quencies and oscillation modes arising from the dissipative effects. It is shown that the dis-
crete approximation of the eigenvalue problem obtained either by finite difference or finite
element methods has a structure which preserves relevant properties of the continuum
formulation. Finally, the generalized eigenvalue problem is solved for a rectangular mag-
netic thin-film by using the finite differences and for a linear chain of magnetic nano-
spheres by using the finite elements. The natural frequencies and the spatial distribution
of the natural modes are numerically computed.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The analysis and the determination of the resonances in micromagnetic systems are very important to understand the
magnetization dynamics driven by radio-frequency external magnetic fields. Traditionally, the main experimental and the-
oretical studies concerning this problem are related to the classical ferromagnetic resonance experiments. In this situation, a
small ferromagnetic particle is initially brought in the saturated state by means of a sufficiently strong external DC magnetic
field which is applied along a given direction. Then, the particle is exposed to a radio-frequency (RF) external magnetic field.
The amplitude of this RF field is usually much smaller than the DC component and the wavelength is in the range of centi-
meters, typically much larger than the characteristic dimension of the magnetic particle.
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The frequency of the applied RF field is slowly varied and the power absorbed by the magnetic particle is measured as a
function of the applied field frequency. The peaks in this response curve reveal the excitation of certain magnetization nor-
mal oscillations connected to the resonance phenomena.

The response of the system exhibits a rich variety of behaviors depending on the strength of the applied RF field. For suf-
ficiently small amplitudes, one expects the typical linear resonant response in which the excited modes are somehow decou-
pled. Conversely, when the RF power is increased above certain thresholds, the coupling of the oscillation modes due to
nonlinear effects cannot be neglected.

In this respect, it was initially conjectured that a spatially uniform RF field would have certainly induced a spatially uni-
form magnetic response. Later, it became clear that, owing to the nonlinear nature of magnetization dynamics, at sufficiently
high RF powers, spatially uniform motions could get coupled to certain spin-wave modes, giving rise to complicated nonuni-
form magnetization configurations [1,2]. Moreover, depending on the strength of the RF component, nonlinear dynamical
phenomena such as foldover and spin-wave instabilities can also manifest [3,4].

For this reasons, the determination of the natural modes in generic micromagnetic systems is a fundamental step in the
investigation of microwave-driven magnetization dynamics.

Another scenario where the normal oscillations around an equilibrium play a fundamental role is in the modelling of
thermal fluctuations. In fact, thermal agitation tends to slightly perturb the equilibrium magnetization and therefore, from
the analysis of the resonant response of the micromagnetic system, one can retrieve insightful information about fluctuation
and dissipation processes.

Experimental observations of thermally-induced spectra have been carried out in the case of equilibrium magnetization
configurations which are not necessarily spatially uniform, such as, for example, Landau configurations in ultra-thin mag-
netic films (see Refs. [5,6] and references therein).

The theoretical description of magnetization resonance phenomena has also been the focus of considerable research.
Walker analyzed the case of saturated ellipsoidal particles in which the exchange interaction could be neglected [7]. On
the other hand, Aharoni tackled the dual case of saturated magnetic nanospheres in which the exchange interaction was pre-
valent with respect to magnetostatics [8]. Brown completely analyzed the case of an infinite cylinder [9].

These fundamental works produced analytical techniques to determine the natural frequencies and modes, but their use
was limited to the case of particles with very special shapes. Moreover, these approaches are applicable to the study of mag-
netization oscillations around saturated (spatially uniform) equilibrium configurations.

Recently, there has been growing interest in the computation of resonances for particles with generic shapes such as, for
instance, rectangular thin-films or ferromagnetic prisms. To this end, numerical techniques based on micromagnetic simu-
lations and Fourier analysis have been proposed [10–12]. In these works, magnetization dynamics around the equilibrium is
excited with suitable field pulse and, from the Fourier analysis of the response, the normal modes are extracted. These meth-
ods have some disadvantages: (1) first, it is not trivial how to design a field pulse which excites all the modes of the system,
then it is very difficult to distinguish the normal oscillations by analyzing the magnetization response; (2) in the case of low
natural frequencies, the micromagnetic simulations should take very long time in order to have a good time resolution of the
oscillation. For this problem, also methods based on the dynamical matrix have been proposed [13–16]. The latter approach
is a numerical method based on the solution of a discrete eigenvalue problem whose unknowns are the spherical angles rep-
resenting the deviations of the magnetization in each cell with respect to the ground state. This method has been applied to
the study of rectangular geometries [13–15] and magnetic dipoles chains [16].

This paper proposes a general and effective approach to study and compute numerically the small oscillations around
generic micromagnetic equilibria in magnetic systems with arbitrary geometries. Preliminary results relevant to some spe-
cific cases have been published in [17,18].

Small oscillations problems are usually formulated in terms of appropriate symmetric self-adjoint eigenvalue problems
[19]. The matrices involved in such problems are related to the relevant terms of the energy in the system. In classical
mechanics, small oscillation problems represent physical situations in which the total energy is conserved and there is con-
tinuous exchange between kinetic and potential energy.

On the other hand, small oscillations around micromagnetic equilibria have peculiar characteristics with respect to clas-
sical mechanical oscillations. The magnetization vector field has constant magnitude and only its direction can change in
space and time. This occurs through precessional type oscillations. In order to take into account this property in the problem
of small oscillations, special attention has to be paid in the linearization procedure. The issues of time-domain numerical sim-
ulations due to this peculiarity of micromagnetic oscillations and dynamics have been studied in details in Refs. [20–23]. Here
we focus our attention on frequency domain analysis for the linear model. In this respect, we will reformulate the problem
of small oscillations around micromagnetic equilibria as a generalized eigenvalue problem for self-adjoint operators con-
nected to the micromagnetic effective field. These operators take into account the different kinds of energies of the micromag-
netic system. This formulation can be used to compute magnetization oscillations around generic (spatially non-uniform)
equilibrium configurations. In particular, we propose a general discretized model of the eigenvalue problem, based either
on the finite difference or the finite element methods, which naturally preserves the structural properties of the continuum
problem.

The structure of the paper is the following: in Section 2, we introduce and recall the properties of the free energy func-
tional which describes the state of a generic magnetic body. Then, in Section 3, micromagnetic equilibria are analyzed. In
Section 4, the problem of the conservative free oscillations of the micromagnetic system around an equilibrium configuration
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is formulated as suitable generalized eigenvalue problem and its spectral properties are studied. The stability and instability
of micromagnetic equilibria are also addressed and, by using appropriate perturbation techniques, the small oscillations of
the system are determined when dissipation effects are taken into account. In Section 5, the spatial discretization of the
eigenvalue problem is addressed. Finally, in Section 6 the normal oscillations of two micromagnetic systems with different
geometries are numerically computed in order to emphasize the effectiveness and the generality of the proposed approach.

2. Micromagnetic free energy

Let us assume that a region X is occupied by a magnetic body in contact with a thermal bath at constant temperature T. In
the case of a system of magnetic bodies, the region X is the union of the regions occupied by each magnetic body. The mag-
netic state of the medium can be described by means of the magnetization vector field Mðr; tÞ defined at each spatial location
r 2 X, for each time instant t and given temperature T.

Micromagnetic theory assumes the fundamental constraint jMðr; tÞj ¼ MsðTÞ for the magnetization, which is valid for
temperatures T much smaller than the Curie temperature of the material [9,24], where MsðTÞ is the saturation magnetization
of the material at temperature T. For this reason, the state variable of the magnetic system becomes the magnetization unit-
vector mðr; tÞ ¼ M=Ms (the dependance on the temperature is understood) and the micromagnetic constraint is rewritten as
jmj ¼ 1: ð1Þ
In the sequel, to simplify the derivations, we will use dimensionless quantities.
The behaviour of the magnetic body is described by the normalized micromagnetic free energy [24] functional

g½m; ha� ¼ G½M; Ha�=ðl0M2
s VXÞ, where G½M; Ha� is the Gibbs–Landau free energy functional in physical units, l0 is the vacuum

magnetic permeability, VX is the volume of the magnetic body and ha ¼ Ha=Ms is the normalized applied field. The functional
g is formed by the sum of normalized exchange, magnetostatic, uniaxial anisotropy and Zeeman energies, respectively:
g½m; ha� ¼ 1
VX

Z
X

l2
ex

2
ðrmÞ2 � 1

2
hm � m þ jan½1 � ðm � eanÞ2� � ha � m

" #
dV ; ð2Þ
where lex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=ðl0M2

s Þ
q

is the material exchange length, A is the exchange stiffness constant of the material, jan is the nor-
malized uniaxial anisotropy constant, ean is the easy axis unit-vector and hm is the magnetostatic (demagnetizing) field,
which is the solution of Maxwell’s magnetostatic equations through the following boundary value problem:
r � hm ¼ �r � m ; r � hm ¼ 0; ð3Þ
n � ½hm�@X ¼ 0 ; n � ½hm�@X ¼ n � m: ð4Þ
In Eqs. (3) and (4), we have denoted with n the outward normal to the boundary @X of the magnetic body, and with ½hm�@X
the jump of the vector field hm across @X. It is well-known that the solution of the above linear boundary value problem (3)
and (4) can be expressed as a function of the magnetization vector field in the following operator form:
hm½m� ¼ �N m ¼ �rr � 1
4p

Z
X

mðr0Þ
jr � r0j dV r0 : ð5Þ
3. Micromagnetic equilibria

The equilibrium configurations of the magnetic body, subject to the action of a static external magnetic field, can be found
by appropriate minimization of the free energy functional (2) under the constraint expressed by Eq. (1). From the mathemat-
ical viewpoint, micromagnetic equilibria define magnetization vector fields m fulfilling the constraint (1) and such that the
first-order variation of g½m; ha� with respect to m is zero. The nature of these micromagnetic equilibria can be then studied
by analyzing the convexity around the equilibrium of the free energy functional through its higher order derivatives.

Let us now consider a given magnetization configuration m0ðrÞ. Then, let us perturb m0 such that mðrÞ ¼ m0ðrÞ þ dmðrÞ.
In order to compute the derivatives from the expression of the free energy functional (2), one has to take into account that

the variations dm of the magnetization cannot be arbitrary vector fields, since the total magnetization m ¼ m0 þ dm must
fulfill the constraint (1). In other terms, one can view Eq. (1) as defining an (infinite-dimensional) manifold M. Therefore, the
admissible variations dm are vector fields tangential to this manifold. For this reason, the derivatives of the free energy have
to be computed directly along these vector fields. This special derivative is often referred to as Lie derivative [25].

Now we observe that any admissible variation dmðrÞ such that jm0ðrÞ þ dmðrÞj ¼ 1 can be obtained by performing a rota-
tion of m0ðrÞ at each spatial location. The most general rotation can be generated in the following way: we consider an
unconstrained vector field #ðrÞ. Then, we use the 3 � 3 matrix Kð#Þ such that
Kð#Þu ¼ #� u; u 2 R3 ð6Þ
and compute the matrix exponential expðKð#ÞÞ. Indeed, the matrix product expðKð#ÞÞ � m0 produces a rotation of m0 char-
acterized by the angle h ¼ j#?j around the axis identified by the vector #?, where #? is the component of # orthogonal to m0.
Thus, the admissible variations are given by:
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mðrÞ ¼ m0ðrÞ þ dmðrÞ ¼ expðKðe#ðrÞÞÞ � m0ðrÞ; ð7Þ
dmðrÞ ¼ ½expðKðe#ðrÞÞÞ � I� � m0ðrÞ; ð8Þ
where e is a parameter controlling the rotation amplitude and I is the identity matrix.
Now, in order to study the stationary points of the free energy functional, we are interested in its behaviour for small dm

which can be studied by considering the following expansion:
g½m0 þ dm; ha� � g½m0; ha� ¼ edg½m0; dm� þ e2

2
d2g½m0; dm� þ Oðe3Þ; ð9Þ
where dg½m0; dm� and d2g½m0; dm� are respectively the first and the second-order variations of the free energy g, with respect
to dm and evaluated on m0. We observe that dg½m0; dm� is linear in dm, whereas d2g½m0; dm� is a quadratic form in dm.

With the above definition of admissible variations, after appropriate manipulations, one can compute the expansion (9)
with respect to a ‘small’ admissible variation connected with a small rotation amplitude e � 1. In fact, by using the series
expansion
expðeKð#ðrÞÞ ¼ I þ eKð#Þ þ e2

2
K2ð#Þ þ Oðe3Þ ð10Þ
the admissible variation (8) can be written as:
dm ¼ eKð#Þ � m0 þ e2

2
K2ð#Þ � m0 þ Oðe3Þ ð11Þ

¼ e#� m0 þ e2

2
#� ð#� m0Þ þ Oðe3Þ ð12Þ

¼ ev þ e2

2
#� v þ Oðe3Þ; ð13Þ
where
vðrÞ ¼ #ðrÞ � m0ðrÞ ð14Þ
is a vector field pointwise perpendicular to the magnetization m0ðrÞ.
By substituting the expansion (13) in the expression g½m0 þ dm; ha� � g½m0; ha�, one obtains after some algebra:
g½expðeKð#ÞÞ � m0; ha� � g½m0; ha� ¼ edg½m0;v� þ e2

2
d2g½m0;v� þ Oðe3Þ ¼

¼ �e
1

VX

Z
X

heff ½m0� � v dV þ e
1

VX

Z
@X

l2
ex

2
@m0

@n
� v dSþ

þ e2

2
1

VX

Z
X

l2
ex

2
jrvj2 � 1

2
hmðvÞ � v � janðv � eanÞ2 þ h0ðrÞ

2
jvj2

( )
dV þ Oðe3Þ: ð15Þ
Since the vector field #ðrÞ is arbitrary, such is also v which, in turn, represents the generic admissible small variation of m0.
In Eq. (15), the following notations have been also used:
heff ½m0� ¼ l2
exr2m0 þ hm½m0� þ janðean � m0Þm0 þ ha; ð16Þ

h0ðrÞ ¼ heff ½m0�ðrÞ � m0ðrÞ: ð17Þ
By comparing Eq. (9) with Eqs. (15)–(17), it is easy to conclude that
dg½m0;v� ¼ � 1
VX

Z
X

heff ½m0� � v dV þ 1
VX

Z
@X

l2
ex

2
@m0

@n
� v dS ð18Þ

d2g½m0;v� ¼ 1
VX

Z
X

l2
ex

2
jrvj2 � 1

2
hmðvÞ � v � janðv � eanÞ2 þ h0ðrÞ

2
jvj2

( )
dV : ð19Þ
Eq. (18) expresses the first-order variation of the free energy functional with respect to the vector field v, evaluated on m0,
whereas Eq. (19) expresses the second-order variation of g through the Hessian functional.

To summarize, magnetization vector fields mðrÞ on which g½m; ha� is evaluated, are elements of the (infinite dimensional)
manifold M defined by the micromagnetic constraint (1). The vector fields vðrÞ, which represent the small variations of mðrÞ
around a given state m0ðrÞ, belong to the tangent space of M at m0, which will be denoted by TMðm0Þ, that is
vðrÞ � m0ðrÞ ¼ 0.

Eq. (16) defines the so called micromagnetic ‘effective field’ [9,24]. One can clearly see that, in general, the effective field is
constituted by the sum of four terms associated with the corresponding contributions in the free energy: the exchange field
hex, the magnetostatic field hm, the anisotropy field han and the applied field ha:
heff ½m; t� ¼ hex þ hm þ han þ haðtÞ: ð20Þ
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In the general case, the explicit dependence of heff on time is related to the dependence on time of ha. The first three terms in
Eq. (20) are linearly related to the vector field m through the following equations [24]:
hex½m� ¼ l2
exr2m; ð21Þ

hm½m� ¼ �N m ¼ �rr � 1
4p

Z
X

mðr0Þ
jr � r0j dV r0 ð22Þ

han ¼ jan eanðrÞðeanðrÞ � mðrÞÞ: ð23Þ
We now proceed to the derivation of the vector fields m0 representing equilibrium configurations. From Eq. (15), if one im-
poses that the first-order variation vanishes:
dg½m0;v� ¼ lim
e!0

1
e

ðg½expðeKð#ÞÞ � m0; ha� � g½m0; ha�Þ

¼ � 1
VX

Z
X

m0 � heff ½m0� � #dV þ 1
VX

Z
@X

l2
ex

2
m0 � @m0

@n
� #dS ¼ 0; ð24Þ
by using the arbitrariness of #ðrÞ, the Brown’s equations for micromagnetic equilibria m0ðrÞ are derived[9]:
m0 � heff ½m0� ¼ 0 in X;
@m0

@n
¼ 0 on @X: ð25Þ
The above equations characterize micromagnetic equilibria: the equilibrium configurations m0 are such that the magnetic
effective torque is identically zero within the volume X and the homogeneous Neumann condition are fulfilled on the bound-
ary @X.

As mentioned before, the nature of the equilibrium m0 can be studied by means of the second-order variation of the free
energy g½m; ha�. In fact, according to Eq. (24), the expansion (15) becomes:
g½expðeKð#ÞÞ � m0; ha� � g½m0; ha� ¼ e2

2
d2g½m0;v� þ Oðe3Þ

¼ e2

2
1

VX

Z
X

l2
ex

2
jrvj2 � 1

2
hmðvÞ � v � janðv � eanÞ2 þ h0ðrÞ

2
jvj2

( )
dV þ Oðe3Þ: ð26Þ
It can be readily seen that the equilibrium configuration minimizes the free energy if, for any admissible small variation (in
the sense of Eq. (8)), the Hessian functional, evaluated on the equilibrium configuration m0, is a positive definite quadratic
form in v:
d2g½m0;v� ¼ 1
VX

Z
X

l2
ex

2
jrvj2 � 1

2
hmðvÞ � v þ janðv � eanÞ2 þ h0ðrÞ

2
jvj2

( )
dV > 0 8v – 0 2 TMðm0Þ: ð27Þ
4. Small oscillations around an equilibrium configuration

We now proceed to the study of magnetization small oscillations around a micromagnetic equilibrium configuration
m0ðrÞ.

Magnetization dynamics is described by the Landau–Lifshitz–Gilbert equation [26] which, in normalized form, has the
following expression:
@m
@t

¼ �m � heff � a
@m
@t

� �
in X: ð28Þ
In Eq. (28) m and heff are measured in units of the saturation magnetization Ms, a is the dimensionless Gilbert damping con-
stant and time is measured in units of ðcMsÞ�1 (c is the absolute value of the gyromagnetic ratio). Eq. (28) must be comple-
mented with a boundary condition on @X. In this respect, the magnetization mðr; tÞ is assumed to satisfy the following
condition at the body surface [9]:
@m
@n

¼ 0; ð29Þ
which is the condition expected when no surface anisotropy is present.
The effective field heff ½m� can be expressed in terms of the Fréchet derivative of g. The Fréchet derivative of a generic func-

tional F½u� with respect to u, denoted as dF=du, is defined such that [27]:
dF½u; du� ¼ lim
�!0

F½u þ �du� � F½u�
�

¼ 1
VX

Z
X

dF
du

½u� � dudV : ð30Þ
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In this respect, since the homogeneous boundary condition (29) holds, from Eq. (18), it results [24]:
dg
dm

½m� ¼ �heff ½m�: ð31Þ
According to Eq. (31), the LLG equation can be written in the following way:
@m
@t

¼ m � dg
dm

þ a
@m
@t

� �
in X: ð32Þ
Let us consider an equilibrium configuration m0ðrÞ and a small oscillation dm of magnetization with respect to it. The devi-
ation dm can be expressed through the expansion (11), (13), (14), which preserves magnetization magnitude. In this case, the
vector field # is also function of time as well as the vector field v.

By substituting this expansion into Eq. (32) and taking the limit for e ! 0, one ends up with the LLG equation linearized
around m0:
@v
@t

� am0 � @v
@t

¼ m0 � d
dv

ðd2g½m0;v�Þ in X; ð33Þ
where we have used the fact that dg½m0;v� ¼ 0 (see Eqs. (24) and (25)). In order to compute the derivative of the Hessian
functional (19) in the latter equation, one can be easily convinced that:
1
VX

Z
X

d
dv

ðd2g½m0;v�Þ � v dV ¼ 1
VX

Z
X

fh0v � h0
eff ½v�g � v dV þ 1

VX

Z
@X

l2
ex

2
@v
@n

� v dS; ð34Þ
where
h0
eff ½v� ¼ l2

exr2v � N v þ janean � ean � v; ð35Þ
(the symbol � denotes the dyadic Kronecker tensor product). Since the homogeneous Neumann boundary condition (29) is
assumed to hold for the magnetization dynamics, we restrict our attention to vector fields v which have zero normal deriv-
ative on @X:
@v
@n

¼ 0 on @X: ð36Þ
Therefore, it is now possible to express the vector field h0
eff and the Hessian functional in the following operator form:
h0
eff ½v� ¼ �Cv ð37Þ

d2g½m0;v� ¼ 1
VX

Z
X

v � A0v dV ð38Þ
where the operators C and A0 are properly defined in H1ðXÞ, which is, roughly speaking, the subspace of L2ðXÞ vector fields
which admit first partial derivatives (in weak or distributional sense) and these are elements of L2ðXÞ:
C ¼ �l2
exr2 þ N � janean � ean ð39Þ

A0 ¼ h0ðrÞI þ C; ð40Þ
and I is the identity operator. By using the Green’s identities and the magnetostatic reciprocity theorem[9], it can be easily
proved that both the operators C and A0, complemented by the boundary conditions (36) are self-adjoint with respect to the
classical scalar product:
ðv;wÞ ¼ 1
VX

Z
X

vðrÞ � wðrÞdV ; ð41Þ
namely:
ðCv;wÞ ¼ ðv; CwÞ; ðA0v;wÞ ¼ ðv;A0wÞ: ð42Þ
We observe that Eq. (38) can be written in compact notation as:
d2g½m0;v� ¼ ðv;A0vÞ; ð43Þ
and that, as long as the condition (27) holds, the operator A0 is also positive definite.
With the above notations, Eq. (33) can be written as
@v
@t

� am0 � @v
@t

¼ m0 � ½h0v � h0
eff ðvÞ� ¼ m0 � A0v: ð44Þ
The latter equations must be complemented with the boundary condition (36).



6136 M. d’Aquino et al. / Journal of Computational Physics 228 (2009) 6130–6149
This result is useful to discuss the stability of the micromagnetic equilibrium m0. In order to derive some stability
conditions, let us rewrite the linearized LLG Eq. (44)
@v
@t

¼ m0 � A0v þ a
@v
@t

� �
: ð45Þ
By scalar multiplying both sides of Eq. (45) by A0v þ a @v
@t

� �
and integrating over the magnetic body volume X, one has:
1
VX

Z
X

@v
@t

� A0v þ a
@v
@t

� �
dV ¼ 0: ð46Þ
It is easy to see, remembering Eq. (38), that one ends up with the following balance equation:
1
2

d
dt

d2g½m0;v� ¼ � 1
VX

Z
VX

a
@v
@t

����
����

2

dV : ð47Þ
Now, if the equilibrium configuration m0ðrÞ is a minimum of the free energy, then, according to Eq. (27), the Hessian func-
tional d2g½m0;v� is positive definite. Therefore, Eq. (47) states that the rate of change of d2g must decrease towards zero. This
implies that the equilibrium configuration m0ðrÞ is also asymptotically stable against small perturbations.

Conversely, as far as the instability of the micromagnetic dynamical system defined by Eq. (45) is concerned, it can be
shown that the instability occurs when the Hessian functional A0 loses its positive definiteness, namely:
9 v0 2 TMðm0Þ : d2g½m0;v0� ¼ ðv0;A0v0Þ < 0: ð48Þ
This mathematical property corresponds, for example, to the physical situation in which the applied field is greater than the
nucleation field of the magnetic particle [9].

A rigorous proof that Eq. (48) is a sufficient condition for the instability of the system requires the generalization of the
Chetaev’s theorem [29,30] to the case of infinite-dimensional Banach spaces [31].

4.1. Eigenfunction expansion and orthogonality

In order to determine the normal magnetization oscillations around the stable equilibrium configuration m0, let us con-
sider, for the time being, only the conservative magnetization dynamics, expressed by Eq. (45) with a ¼ 0:
@v
@t

¼ m0 � A0v in X; ð49Þ
It is clear from Eq. (49) that the right hand side represents a vector field belonging to the tangent space TMðm0Þ, namely, in
each point r 2 X, it lies in the plane perpendicular to m0ðrÞ. For this reason, we can rewrite Eq. (49) in the following way:
@v
@t

¼ m0 � A0?v in X; ð50Þ
where A0? is basically the operator A0 projected on the tangent space TMðm0Þ:
A0? ¼ Pm0 A0; ð51Þ
and Pm0 is the pointwise projection operator on TMðm0Þ, expressed as
Pm0 w ¼ ðI � m0 � m0Þ � w: ð52Þ
As a consequence of the above definitions, the vector fields in the image of the operator A0? are pointwise orthogonal to
m0ðrÞ.

Then, if one considers the vector fields v1;v2 2 TMðm0Þ, by using the fact that the operator A0 is self-adjoint, it is imme-
diate to prove that also the projected version A0? is self-adjoint:
ðv1;A0?v2Þ ¼ ðv2;A0?v1Þ 8v1;v2 2 TMðm0Þ: ð53Þ
In addition, it happens that
d2g½m0;v� ¼ ðv;A0vÞ ¼ ðv;A0?vÞ 8v 2 TMðm0Þ: ð54Þ
Thus, when m0 is a minimum of the free energy, by using the condition (27) and (43), it is readily seen that the operator A0?

is also positive definite:
d2g½m0;v� ¼ ðv;A0vÞ ¼ ðv;A0?vÞ > 0 8v – 0: ð55Þ
We now use the notation previously introduced for the cross product (see Eq. (6)).
m0ðrÞ � wðrÞ ¼ Kðm0Þw ð56Þ
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The operator Kðm0Þ is linear and anti-symmetric and, when is restricted to vector fields in TMðm0Þ, is also invertible:
ðv1;Kðm0Þv2Þ ¼ �ðv2;Kðm0Þv1Þ; Kðm0ÞKðm0Þ ¼ �I ; ð57Þ
which means that the inverse of Kðm0Þ coincides with �Kðm0Þ. With this notation the linearized LLG Eq. (50) can be written
as
@v
@t

¼ Kðm0ÞA0?v : ð58Þ
Now we restrict our attention in Eq. (58) to vector fields v which belong to the tangential manifold TMðm0Þ. Thus, by
multiplying both sides of Eq. (58) by Kðm0Þ and using the properties (57), one has:
Kðm0Þ @v
@t

¼ �A0?v: ð59Þ
It is convenient to write Eq. (59) in the frequency domain:
�jxKðm0Þ~v ¼ A0? ~v ð60Þ
where the phasor notation
vðr; tÞ ¼ Ref~vðrÞejxtg; ð61Þ
has been used.
The problem of finding the normal oscillations of the magnetization and the natural frequencies for a generic particle con-

sists in determining the values of the frequency x such that the linearized LLG Eq. (60) has nonzero solution. From the math-
ematical point of view, Eq. (60) can be regarded as the following (generalized) eigenvalue problem [32]:
A0? ~u ¼ xB0 ~u; ð62Þ
where B0 ¼ �jKðm0Þ (the subindex resembles the dependance on m0). The latter eigenvalue problem can be equivalently
formulated in terms of appropriate sesquilinear forms (see Appendix A.1).

The generalized eigenvalues xk and eigenfunctions ~uk represent the natural frequencies and the normal oscillation modes
of the micromagnetic system, respectively.

One can be easily convinced that, due to the self-adjointness of A0? and the anti-symmetry of K, the operators A0? and B0

are also Hermitian with respect to the standard (complex) inner product of TMðm0Þ. One has, for any ~v1; ~v2 2 TMðm0Þ:
ð~v1;B0 ~v2Þ ¼ ð~v2;B0 ~v1Þ; ð63Þ
where now ð~v; ~wÞ denotes the scalar product (the symbol * indicates complex conjugate):
ð~v; ~wÞ ¼ 1
VX

Z
X

~vðrÞ� � ~wðrÞdV ; ~v; ~w 2 TMðm0Þ: ð64Þ
In addition, it happens:
B0B0 ¼ I : ð65Þ
As a consequence of the above properties, some important facts can be derived about the eigenvalues and the eigenfunctions
of the problem (62):

(1) the eigenvalues are all real.
(2) The eigenfunctions related to different and non degenerate eigenvalues are A0?-orthogonal.

In order to prove these properties, we refer only to the point spectrum of the eigenvalue problem (62).
In fact, it can be shown (see the Appendix A.2) that the eigenvalue problem has discrete spectrum (the essential spectrum

might be only be constituted of one point at infinity) and eigenfunctions which form an orthonormal and complete set in
TMðm0Þ 	 H1ðXÞ. This justifies the computation of the eigenvalues by finite-dimensional approximations of the continuous
problem, which will be discussed in the sequel.

Let us consider two eigenfunctions ~uk; ~uh. One can write:
1
xk

ð~uh;A0? ~ukÞ ¼ ð~uh;B0 ~ukÞ; ð66Þ

1
xh

ð~uk;A0? ~uhÞ ¼ ð~uk;B0 ~uhÞ: ð67Þ
By considering the complex conjugate of both sides of Eq. (67), subtracting it from Eq. (66) and taking into account that A0?
and B0 are Hermitian, one ends up with:
x�
k � xh

x�
kxh

� �
ð~uh;A0? ~ukÞ ¼ 0: ð68Þ
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From Eq. (68) one can see that:


 when k ¼ h, thanks to the positive definiteness of the operator A0?, the imaginary part of the eigenvalue xk is necessarily
zero:
Imfxkg ¼ xk � x�
k

2
¼ 0: ð69Þ

 when k – h and the eigenvalues are non degenerate, that is xk – xh, one ends up with the following orthogonality
condition for the eigenfunctions ~uk and ~uh:
ð~uh;A0? ~ukÞ ¼ 0: ð70Þ
The latter equation means that ~uk and ~uh are A0?-orthogonal, namely they are orthogonal with respect to the new scalar
product defined in TMðm0Þ
ð~v; ~wÞA0?
¼ ð~v;A0? ~wÞ ¼ ðA0? ~v; ~wÞ; ð71Þ
which can be consistently defined since the operator A0? is self-adjoint and positive definite.

In addition, we observe that if xk and ~uk are respectively the kth eigenvalue and the corresponding eigenfunction of prob-
lem (62), then such are also �xk and ~u�

k:
A0? ~uk ¼ xkB0 ~uk ) A0? ~u�
k ¼ �xkB0 ~u�

k: ð72Þ
In the following, we consider orthonormal eigenfunctions ~uk such that:
ð~uh;A0? ~ukÞ ¼ ð~uh; ~ukÞA0?
¼ dhk; ð73Þ
where the symbol dhk denotes the Kronecker’s delta.
The derived orthogonality condition is very important to understand how it is possible to excite selected magnetization

modes through the application of appropriate external magnetic fields.

4.2. Perturbation analysis of micromagnetic modes

In the following, we will study the perturbation of the eigenfrequencies xk and eigenfunctions ~uk which arise from the
introduction of a small dissipation in the system, which corresponds to consider Eq. (45) in the frequency domain with
a – 0:
�jxKðm0Þ � ~v � jxa~v ¼ A0? ~v: ð74Þ
By using the operator notations introduced before, one can write Eq. (74) again in the form of generalized eigenvalue
problem:
A0? ~v ¼ xðB0 þ dBÞ~v; ð75Þ
where the operator dB is
dB ¼ �jaI : ð76Þ
It can be immediately inferred that the introduction of the damping affects the self-adjointness of the operator B0 þ dB.
Therefore, one consequence is that the natural frequencies x0

k given by the eigenvalues of the problem (75), such that,
A0? ~u0
k ¼ x0

kðB0 þ dBÞ~u0
k; ð77Þ
will be, in general, complex and will not coincide with the xk derived in the conservative case. Moreover, the eigenfunctions
of the problem (75) will not be orthogonal anymore.

Nevertheless, for small values of the damping constant a, which is the case in many experimental situations (typically
a � 10�3—10�2), we can make a perturbative study (see Appendix A.3 for a justification) in order to derive the expressions
of x0

k.
We start writing the eigenvalue problem (77) in perturbative form. In fact, we assume that
x0
k ¼ xk þ dxk; ~u0

k ¼ ~uk þ d~uk; A0? ~uk ¼ xkB0 ~uk: ð78Þ
With these assumptions, the eigenvalue problem (77) becomes:
A0?ð~uk þ d~ukÞ ¼ ðxk þ dxkÞðB0 þ dBÞð~uk þ d~ukÞ: ð79Þ
By expanding the latter equation, remembering (78) and retaining only terms up to first-order, one has:
A0?d~uk ¼ xkB0d~uk þ xkdB~uk þ dxkB0 ~uk: ð80Þ
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It is convenient to represent the eigenfunctions perturbations d~uk by using the unperturbed eigenfunctions ~uk:
d~uk ¼
X

h

�kh ~uh; ð81Þ
where the expansion coefficients �kh are the Fourier coefficients given by
�kh ¼ ðd~uk; ~uhÞA0?
: ð82Þ
By using the expansion (81) in Eq. (80), one has:
A0?
X

h

�kh ~uh ¼ xkB0

X
h

�kh ~uh þ xkdB~uk þ dxkB0 ~uk: ð83Þ
Now, by scalar multiplying both sides by the eigenfunction ~uk, remembering the orthonormality condition (73), the expres-
sion (76) of the operator dB and solving for the eigenfrequency perturbation dxk, one ends up with:
dxk ¼ �xk
ð~uk; dB~ukÞ
ð~uk;B0 ~ukÞ ¼ jax2

k
ð~uk; ~ukÞ

ð~uk;A0? ~ukÞ ¼ jax2
kð~uk; ~ukÞ ¼ j

1
sk
; ð84Þ
where sk ¼ ðax2
kð~uk; ~ukÞÞ�1. As expected, we notice that, as a consequence of the stability of m0ðrÞ, then, according to Eq.

(27), the imaginary parts dxk of the natural frequencies x0
k are positive. From the physical point of view, this implies that

the magnetization mode ~u0
k will correspond to a damped oscillation towards the equilibrium configuration with the decay

constant sk.
Moreover, with some algebraic manipulations, the Fourier coefficients of the eigenfunctions perturbations d~uk can be

derived:
�kh ¼ ja
xk

xh � xk
ð~uk; ~uhÞ k – h; ð85Þ

�kk ¼ j
a
2

ð~uk; ~ukÞ; k ¼ h: ð86Þ
We observe that dxk, as well as �kh, are small quantities if a is small (typically a � 10�3—10�2) and xk is not close to xh.
Therefore, the coupling between normal modes arising from the introduction of damping is a relatively small effect.

5. Spatially discretized problem

We now proceed to the numerical formulation of the eigenvalue problem (62). To this end, let us suppose to perform a
spatial discretization of the magnetic body into N grid points. The values of magnetization in these grid points are typically
associated either with the values of magnetization in cells for finite difference methods or with the magnetization values at
the nodes for finite element methods.

We denote the magnetization vector associated with the lth grid point by mlðtÞ 2 R3. Analogously, the effective and the
applied fields at each grid point will be denoted by the vectors heff;lðtÞ;ha;lðtÞ. In addition to these vectors, we introduce an-
other notation for the mesh vectors which include the information of all grid points of the mesh. In this respect, we will indi-
cate with m;heff ;ha the vectors in R3N given by:
m ¼
m1

..

.

mN

0
BB@

1
CCA heff ¼

heff ;1

..

.

heff ;N

0
BB@

1
CCA ha ¼

ha;1

..

.

ha;N

0
BB@

1
CCA: ð87Þ
Usual spatial discretization techniques [28] (e.g. finite elements and finite differences) quite naturally lead to a discretized
version of the free energy (2) which has generally the form
gðm;haÞ ¼ 1
2

mT � C � m � ha � m; ð88Þ
where C is now a 3N � 3N symmetric matrix which describes exchange, anisotropy and magnetostatic interactions. Once the
free energy has been discretized, the corresponding spatially discretized effective field heff ðm; tÞ can be obtained as
heff ðm; tÞ ¼ �
@g
@m

¼ �C � m þ haðtÞ: ð89Þ
We notice that the effective field mathematical structure (31) is formally preserved after the spatial discretization, and the
matrix C is the discretized version of the self-adjoint integral-differential operator C defined by (39). By using the above nota-
tions, the spatially semi-discretized LLG equation consists in a system of 3N coupled ordinary differential equations (ODEs)
which, for the generic lth grid point, can be written in the following form:
d
dt

ml ¼ �ml � heff;lðm; tÞ � a
d
dt

ml

� 	
; ð90Þ
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and for the whole collection of grid points as:
d
dt

m ¼ �KðmÞ � heff ðm; tÞ � a
d
dt

m
� 	

; ð91Þ
where KðmÞ is the block-diagonal matrix
KðmÞ ¼ diagðKðm1Þ; . . . ;KðmNÞÞ ð92Þ
with blocks Kð � Þ 2 R3�3 such that KðvÞ � w ¼ v � w;8v; w 2 R3.
By using the expression of the discrete effective field (89) in the latter equation, one has:
d
dt

m ¼ KðmÞ �
@g
@m

þ a
d
dt

m
� 	

: ð93Þ
By following the same line of reasoning as in the continuum problem, we consider an equilibrium configuration m0 which
minimizes the discretized free energy g along any admissible small variation v ¼ ðv1; . . . ;vNÞT defined as its counterpart vðrÞ
in the continuum formulation,
v ¼ Kð#Þ � m0; ð94Þ
i.e. such that vl is perpendicular to m0;l according to the rotations described by the collection # ¼ ð#1; . . . ;#NÞT .
It can be easily seen that the semi-discretized LLG Eq. (93), linearized around the configuration m0 has the following

form:
d
dt

v � aKðm0Þ � d
dt

v ¼ Kðm0Þ � A0 � v; ð95Þ
where the matrix A0 is the Hessian matrix of g, evaluated at m0 with respect to the admissible variation v:
A0 ¼ H0 þ C; ð96Þ
the matrix H0 ¼ diagfh0;1 I3; . . . ;h0;N I3g;h0;l is the value of the effective field in the lth grid point due to the equilibrium mag-
netization m0 and I3 is the 3 � 3 identity matrix. We observe that the matrix A0 is defined similarly as its counterpart in the
continuum problem (see Eq. (40)).

As before, we consider now only the conservative dynamics ða ¼ 0Þ and write Eq. (95) in the frequency domain:
jx~v ¼ Kðm0ÞA0 � ~v; ð97Þ
where the notation ~v 2 C3N denotes the mesh vector containing all the magnetization phasors ~vl 2 C3 associated with the
computational grid points l ¼ 1; . . . ;N:
~v ¼

~v1

~v2

..

.

~vN

0
BBBB@

1
CCCCA: ð98Þ
Then, it can be easily inferred that the discretized version of the generalized eigenvalue problem (62) can be written as:
A0? � ~v ¼ xB0 � ~v: ð99Þ
In the latter equation, A0? 2 R3N�3N is the discretized version of the operator A0? and, as one can see from Eq. (51), it is given
by:
A0? ¼ Pm0 � A0; ð100Þ
where Pm0 2 R3N�3N is the discretized projection operator on the vector field m0, given by the following 3 � 3 block diagonal
matrix:
Pm0 ¼ diag I3 � m0;1 � mT
0;1; . . . ; I3 � m0;N � mT

0;N


 �
: ð101Þ
The matrix B0 2 C3N�3N is the 3 � 3 block-diagonal matrix obtained in the following way:
B0 ¼ �jKðm0Þ: ð102Þ
The generalized eigenvalues xk of the problem (99) will give the natural frequencies and the eigenvectors ~u
k

will give the
normal oscillation modes.

We observe that, as their counterparts A0? and B0, the matrices A0? and B0 are hermitian and A0? is also positive definite.
Thus, according to the orthogonality property (73) derived for the continuum problem, the eigenfrequencies xk of the dis-
cretized problem (99) will be real and the eigenvectors will be orthogonal (the notation ~vH denotes the complex conjugate
matrix transpose):
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~uH
k

� A0? � ~u
h

¼ dkh: ð103Þ
In addition, when a small damping a is considered, by using the same line of reasoning as in the continuum formulation, one
can show that the perturbations dxk of the eigenvalues are imaginary and given by the following expressions:
dxk ¼ jax2
k

~uH
k

� ~u
k

~uH
k

� A0? � ~u
k

¼ jax2
k ~uH

k
� ~u

k
¼ j

1
sk
: ð104Þ
Moreover, the Fourier coefficients of the eigenfunctions perturbations d~u
k

can be derived:
�kh ¼ ja
xk

xh � xk
~uH

k
� ~u

h
k – h; ð105Þ

�kk ¼ j
a
2

~uH
k

� ~u
k
; k ¼ h: ð106Þ
Now we discuss the numerical solution of the generalized eigenvalue problem (99).
First of all, we observe that the dimension of the problem can be reduced to 2N � 2N. This allows one to get considerable

saving in both storage and computational power. In fact, we know in advance that the normal oscillation modes will be
pointwise orthogonal to the equilibrium magnetization configuration. Thus, in an appropriate reference frame pointwise
orthogonal to m0, they will have one component equal to zero.

To this end, let us introduce in the generic lth grid point an orthogonal reference frame whose unit-vectors are given by
e1;l ¼ �m0;l � ðez � m0;lÞ; e2;l ¼ ez � m0;l ; e3;l ¼ m0;l: ð107Þ
It is evident, for what we outlined in previous sections, that each vector vl, represented with respect to this basis, will have
the third component equal to zero. The coordinate transformation from the cartesian reference frame and the one defined
above is represented for each grid point by the orthonormal 3 � 3 matrix Rl containing the following direction cosines
Rl ¼
e1;l � ex e2;l � ex e3;l � ex

e1;l � ey e2;l � ey e3;l � ey

e1;l � ez e2;l � ez e3;l � ez

0
B@

1
CA ð108Þ
such that
wl ¼ Rl � vl; ð109Þ
where wl contains the components of the vector associated with the lth grid point with respect to the basis fe1;l; e2;l; e3;lg. As
mentioned before, it happens wl � e3;l ¼ 0. The transformation can be expressed also for the mesh vectors by using the 3 � 3
block-diagonal matrix R ¼ diagðR1; . . . ;RNÞ:
w ¼ R � v: ð110Þ
By multiplying both sides of the problem (99), respectively at left by RT and at right by R, one obtains:
A0
0? � ~v ¼ x B0

0 � ~v: ð111Þ
where the matrices A0
0? and B0

0 are:
A0
0? ¼ RT A0?R; ð112Þ

B0
0 ¼ RT B0R: ð113Þ
By recalling the definition (102), one can be easily convinced that B0
0 is the 3N � 3N block-diagonal matrix obtained repeating

N times the elementary 3 � 3 blocks
B3�3 ¼
0 j 0
�j 0 0
0 0 0

0
B@

1
CA: ð114Þ
The generalized eigenvalue problem (111) has the same eigenvalues xk as (99), but different eigenvectors ~w
k
. Nevertheless,

the eigenvectors ~u
k

of the original problem are simply given by
~u
k

¼ RT � ~w
k
: ð115Þ
The above coordinate transformation allows one to reduce the size of the problem to 2N � 2N by simply considering the gen-
eralized eigenvalue problem for the reduced matrices A00

0? and B00
0 obtained removing from A0

0? and B0
0 the rows and columns

associated with the third cartesian component of each cell vector. It is worth noting that such discrete eigenvalue problem
can be solved by using well-established techniques of numerical linear algebra. In fact, despite the fact that a generalized
eigenvalue problem requires, in general, special solution techniques such as, for instance, the QZ method [38], in our case
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it can be transformed into a standard eigenvalue problem with low computational cost. Since the matrix B00
0 is hermitian,

invertible and coincident with its inverse, one ends up with the standard eigenvalue problem
Fig. 1.
the x; y
figure,

Fig. 2.
magnet
interpr
D0? � ~u ¼ x~u; ð116Þ
where the matrix D0? ¼ B00
0A00

0?. We observe that assembling this matrix involves only sparse matrix product operations. The
eigenvalue problem (116) is equivalent to the original generalized eigenvalue problem.

6. Numerical results

In order to test the effectiveness and the generality of the method, we have computed the normal oscillation modes and
the natural frequencies for two micromagnetic systems with different geometries:

(1) a rectangular nanoscale magnetic thin-film.
(2) an array of 10 magnetic nanospheres assembled in a linear chain.

In the former case the spatial discretization of the eigenvalue problem (62) has been performed by using the finite dif-
ference method which is appropriate to deal with structured meshes. In the latter case the spatial discretization of the eigen-
value problem (62) has been performed by using the finite element method which allows one to treat accurately complex
geometries.

Both these methods, as already stressed, preserve the structural properties of the continuum problem and, therefore, can
be effectively applied to obtain an accurate computation of the normal oscillations.

6.1. Normal oscillations of a Permalloy rectangular magnetic thin-film

We consider a magnetic thin-film 200 nm � 200 nm � 3 nm without magneto-crystalline anisotropy. The non-uniform
equilibrium configuration m0ðrÞ represents a Landau (vortex) remanent state (see Fig. 1).

This equilibrium configuration has been obtained with dynamical micromagnetic simulations starting from an artificial
Landau state. The LLG equation has been numerically integrated with the implicit midpoint rule scheme [23]. The initial
Equilibrium magnetization configuration computed by micromagnetic simulations. The magnetic thin-film is 200 � 200 � 3 nm3. The film plane is
plane. The color plot refers to mxðrÞ. The values of the parameters are: a ¼ 1;l0Ms ¼ 1 T;jan ¼ 0; lex ¼ 5:71 nm. (For interpretation to colours in the
the reader is referred to the web version of this paper.)
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(a) Initial magnetization state (artificial Landau configuration, the color plot refers to mxðrÞ). (b) time evolution of the spatially averaged
ization. (c) time evolution of the discretized free energy. The values of the parameters are the same as in Fig. 1. The total simulated time is 10 ns. (For

etation to colours in the figure, the reader is referred to the web version of this paper.)
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magnetization state and the temporal evolution of the spatially averaged magnetization hmðtÞi are reported in Fig. 2. A
strong damping constant a ¼ 1 has been chosen in order to have fast relaxation toward the equilibrium. It has been checked
that after 10 ns the effective torque acting on the magnetization is below machine accuracy. Therefore, we have assumed the
magnetization state at the end of the simulation as an equilibrium configuration. The free oscillations of the magnetic system
around this remanent state have been computed with the proposed technique.

We have adopted a spatial discretization of the problem (62) on a structured mesh consisted of square prism cells of
5 nm � 5 nm � 3 nm. This mesh size is smaller than the exchange length lex ¼ 5:71 nm in order to guarantee the indepen-
dence of results on the discretization size [34,35]. The magnetization has been supposed uniform within each cell. The dis-
crete exchange operator has been obtained from a 7-point laplacian difference approximation, whereas the magnetostatic
operator has been computed by using a generalization to prism cells of the analytical formulas for cubic cells reported in
Ref. [36]. The eigenvalue problem has been solved with an iterative implicitly-restarted Arnoldi method [37] by using a tol-
Table 1
Eigenvalues computations for decreasing discretization sizes of computational cells.

Edge (nm) f1 (GHz) f2 f3 f4 f5

10 0.04834170116695 4.34719904797588 4.48662612418679 4.53716104452006 4.58012532047085
6.67 0.04776615225695 4.29902353412704 4.48000702275359 4.49926338833020 4.57337813883853
5 0.04772241390201 4.29635175102184 4.47793524071056 4.49560981031406 4.57286540452003
2.5 0.04772202691663 4.29634545523393 4.47791635317348 4.49557475964883 4.57283739100714

Fig. 3. Numerically computed natural modes and frequencies for a magnetic square thin-film 200 nm � 200 nm � 3 nm without magneto-crystalline
anisotropy. The color plot represents the RMS value WkðrÞ of the pointwise oscillation amplitude for mode k. The value of the parameters in the
computations are l0Ms ¼ 1 T; lex ¼ 5:71 nm;jan ¼ 0.



erance within double-precision machine accuracy. This method can be applied to compute generalized eigenvalues and
eigenvectors incrementally, in ascending or descending order of magnitude. The proposed formulation of the problem,
can be therefore applied to analyze systems with moderately large number of unknowns. The results have been confirmed
by direct methods based on the Cholesky factorization [38].

The eigenvalue computations have been repeated for a sequence of decreasing mesh sizes in order to ensure that the
results do not depend on the discretization. The results related to the first 5 eigenvalues are reported in Table 1. It is apparent
that as the discretization is refined, the computed eigenvalues converge. A discretization size of 5 nm, which is below the
exchange length lex ¼ 5:71 nm, is enough to obtain sufficient accuracy.

We have reported in Fig. 3 the frequencies fk and the computed RMS value WkðrÞ of each eigenvector ~wk
WkðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~wk � ~w�

k

q
ð117Þ
for the first 30 modes.
First, we notice that the first mode has a natural frequency f1 � 47 MHz, which is significantly low compared to higher

order modes having frequencies in the GHz regime. As one can see from Fig. 3, this mode represents a translational motion
of the vortex core. This result is consistent with experimental observations (see, for instance, Ref. [39]).
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Fig. 4. Numerically computed natural frequencies fk and time constants sk for modes k



Fig. 6. Numerically computed natural modes k ¼ 1; . . . ;10 for an array of 10 magnetic nanospheres. The values of the parameters are the same as Fig. 5. The
arrows refer to magnetization vector field oscillations in the x; y plane at time t ¼ 0.
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In addition, we observe that the equilibrium configuration m0ðrÞ is, at least in principle, symmetric with respect to 90�
rotations of the system. Concerning the normal modes, two situations may happen (see Fig. 3):
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1. the same symmetry is respected. For example, regarding the modes k ¼ 1; . . . ;24;27; . . . ;30 one can clearly see that WkðrÞ
are invariant for 90� rotations;

2. the RMS value WkðrÞ related to a mode ~wk, which belongs to a pair of degenerate modes f~wk; ~whg, can be obtained from the
90� rotation of WhðrÞ. For instance, in Fig. 3 one can clearly see that the modes 25 and 26 are degenerate. Then, the RMS
value W26ðrÞ can be obtained by rotating W25ðrÞ 90�.

By using Eq. (104), we have computed the time constants sk of the first 30 modes. The results, together with the natural
frequencies fk, are reported in Fig. 4. We remark the fact that the decay constant of mode 1 ðs1 � 200 nsÞ is much larger than
other modes’, which are in the nanosecond regime.

6.2. Normal oscillations of a linear chain of 10 magnetic nanospheres

We consider an array of 10 spherical magnetic particles disposed in a linear chain along the x axis. The radius of each
sphere is r ¼ 10 nm and the distance between the centers is d ¼ 30 nm.

The equilibrium magnetization configuration is a spatially uniform saturated state along the direction perpendicular to
the chain axis. This equilibrium is obtained by applying a DC magnetic field ha ¼ 0:35 perpendicular to the x axis.

Each nanosphere is discretized with a mesh composed of 1279 tetrahedral elements and 308 nodes. The mesh edge is
kept below the exchange length lex ¼ 7 nm in order to guarantee the independence of the results on the mesh size. The mag-
netization is linearly varying within each tetrahedron of the mesh.

The unknowns are the values of the magnetization vector field at the nodes of the mesh. The discrete operator A0? has
been assembled by using finite element micromagnetics[28]. The singularity in the magnetostatic integral operator (22)
has been integrated analytically using the results presented in [40].

The numerical results are reported in Figs. 5–7. In Fig. 5 the natural oscillation frequencies of the linear chain are reported.
One can clearly see that the first 10 modes correspond to oscillation frequencies around 10 GHz. These low order modes are
related to purely dipolar modes in which the magnetization is spatially uniform in each magnetic sphere, as it can be seen in
Fig. 6 where the snapshots of the magnetization oscillation in the x; y plane, at time t ¼ 0, are reported for these modes.
Fig. 7. Numerically computed natural modes for an array of 10 magnetic nanospheres. Magnetization vector field configuration in the x; y plane for higher
order modes. Modes 23, 26, 28 are localized vortex modes, modes 33, 37, 39 are localized anti-vortex modes.
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We observe that the spectrum of the modes exhibits gaps between modes 10-11 and 20-21. Moreover, the oscillation fre-
quencies of higher order modes are close to 70 GHz. Such high frequencies are associated with spatially non-uniform modes
which are strongly localized along the particle chain. For instance, in Fig. 7 one can see that modes 23, 26, 28 are vortex
modes localized in different parts of the particle chain. Conversely, modes 33, 37, 39 are localized anti-vortex modes. It is
remarkable that these spatially non-uniform modes cannot be analyzed in the framework of dipolar approximation [16].

7. Conclusions

In this paper, a general numerical formulation to analyze the oscillation modes and the natural frequencies of a micro-
magnetic system directly in the frequency domain has been presented. The method allows one to treat systems with arbi-
trary geometry and spatially non-uniform equilibrium configurations. Due to the property of magnetization magnitude
conservation, which is peculiar of micromagnetics with respect to classical field problems, special attention has been paid
in the linearization of the LLG equation. The linearized LLG equation has been recast in the frequency domain as a general-
ized eigenvalue problem. The main advantages of the formulation are: the frequency domain analysis is the simplest and
natural approach to compute the oscillations modes; the generalized eigenvalue problem may be easily discretized by using
finite difference or finite element methods depending on the system geometry; the resulting discrete problem can be effi-
ciently solved by using well-established techniques of numerical linear algebra; the discretized model obtained in this
way intrinsically preserves the structural properties of the continuum problem. The involved operators are self-adjoint in
the lossless limit. The spectral properties of the problem have been studied. In particular, the normal oscillation modes sat-
isfy a special orthogonality condition. This property is very important in order to understand how to excite particular modes
of the system. In the limit of small damping, the natural frequencies and modes have been computed by perturbation tech-
nique. Furthermore, the introduction of dissipation in magnetization dynamics implies the coupling between the normal
oscillation modes. The proposed method can be a powerful tool in the analysis and the design of nanoscale magnetic devices
for magnetic recording, spintronics and microwave applications.

Appendix A. Mathematical considerations on the eigenvalue problem

A.1. Formulation of the problem

Let us consider the generalized eigenvalue problem (62):
A0? ~u ¼ xB0 ~u: ðA:1Þ
The linear operators A0? and B0 are defined and self-adjoint in X ¼ TMðm0Þ 	 H1ðXÞ. These operators can be defined by
using suitable sesquilinear forms aðu;vÞ : X � X ! ðu;A0?vÞ and bðu;vÞ : X � X ! ðu;B0vÞ. It can be proved, by using the
same line of reasoning as Ref. [41], that aðu;vÞ and bðu;vÞ are continuous sesquilinear forms in X � X.

Then, the eigenvalue problem (A.1) can be formulated in terms of the sesquilinear forms aðu;vÞ and bðu;vÞ:
að~u; ~wÞ ¼ xbð~u; ~wÞ 8~u 2 X: ðA:2Þ
A.2. Spectral analysis

The spectral analysis of eigenvalue problems involving self-adjoint (hermitian) operators, in which one of them is definite
(A0? in our case), can be completely treated by using the theorems reported in Ref. [32].

In particular, it can be shown that the eigenvalue problem has discrete spectrum (the essential spectrum might be only be
constituted of one point at infinity) and eigenfunctions which form an orthonormal and complete set in X. This justifies the
computation of the eigenvalues by finite-dimensional approximations of the continuous problem.

In the following, a sketch of the theoretical tools supporting this argument is reported.
It has been shown that, when a micromagnetic equilibrium is considered, the operator A0? is positive definite in X. In

addition, it is easy to check that both aðu;vÞ and bðu;vÞ are Hermitian in X.
It can be also proved, by using the continuity of aðu;vÞ and the Friedrichs’ inequality ([32] Th. 2.8-2.9 p. 46), that there

exists a constant c such that
jbðu;uÞj 6 c aðu;uÞ; ðA:3Þ

for all u in X.

In this situation, it can be shown (see [32, p. 36], Theorem 1.1) that the eigenvalue problem (A.1) is equivalent to the
following:
T ~w ¼ l~w; ðA:4Þ

where the operator T ¼ A�1

0?B0 is bounded on X.
Moreover, under the hypothesis that the boundary of the domain X is sufficiently regular, Theorems 2.9 and 2.5 in [32]

prove that the eigenvalues of the operator T exist and form a non increasing sequence l1 P l2 P � � � P ln P � � �.
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Analogously, it can be proved that the eigenvalues of the operator �T exist and form a nondecreasing sequence �lð�Þ
1 6

�lð�Þ
2 6 � � � 6 �lð�Þ

n 6 � � �. Both of these sequences converge to zero. Then, by using Theorem 2.6 in [32] it can be proved that
any point of the essential spectrum of T ð�T Þ cannot lie above (below) any of the eigenvalues lj ¼ 1=xjð�lð�Þ

j ¼ �1=xjÞ;xj

being the natural frequencies.
Therefore, in our case the essential spectrum may be constituted by the only point l ¼ 0, that corresponds to a frequency

x ! 1.
Finally, still by using Theorem 2.9, it is possible to show that bðu;uÞ is completely continuous with respect to aðu;uÞ. This

is enough to apply Theorem 3.1 of [32] to say that any element v in X can be decomposed in Fourier series of the eigenfunc-
tions of T , which form an orthonormal and complete set in X. In addition, a consequence of Theorem 3.1 is that the operator
T is compact.

This results allow to compute the eigenvalues of the problem (A.1) by finite-dimensional approximations of the operators
A0? and B0.

A.3. Perturbation analysis

Let us consider a perturbation of problem (A.1) in the form (77), which depends on the small parameter a � 1:
A0? ~wa ¼ xðaÞBðaÞ~wa; ðA:5Þ
where B0ðaÞ is
BðaÞ ¼ B0 � jaI ; ðA:6Þ
where I is the identity operator in X. The sub-index a also indicates the dependence of the eigenfunction on a. It is apparent
that the perturbed operator BðaÞ is bounded-holomorphic [33], since it can be expressed as a convergent power series of
bounded operators (in our case it is composed only of two terms, both of them bounded). It can be also proved that BðaÞ
is invertible with inverse B�1ðaÞ.

These hypotheses are enough (p. 419 of [33]) to ensure that the problem (A.5) is equivalent to the following:
AbðaÞ~wa ¼ B�1ðaÞA0? ~wa ¼ xðaÞ~wa; ðA:7Þ
where AbðaÞ is a closed operator forming a holomorphic family. Thus, the analytic perturbation theory (Chapter VII of Ref.
[33]) is applicable to AbðaÞ. In particular, one result is that any isolated eigenvalue of the unperturbed operator Abða ¼ 0Þ can
be continued as an analytic function xðaÞ, which is an eigenvalue of AbðaÞ for each a. Similar results hold for the eigenfunc-
tions ~wa.

The above arguments imply that perturbation theory can be applied to the eigenvalue problem (A.1).
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